Vibrational Analysis

The module nnp.vib contains tools to compute analytical hessian and do vibrational analysis.

Let’s first import all the packages we will use:

import torch
from torch import Tensor
from typing import NamedTuple, Optional

With torch.autograd automatic differentiation engine, computing analytical hessian is very simple: Just compute the gradient of energies with respect to forces, and then compute the gradient of each element of forces with respect to coordinates again.

The torch.autograd.grad returns a list of Optional[Tensor]. To be compatible with torch.jit, we need to use assert statement to allow torch.jit to do type refinement.

def _get_derivatives_not_none(x: Tensor, y: Tensor, retain_graph: Optional[bool] = None,
                              create_graph: bool = False) -> Tensor:
    ret = torch.autograd.grad(
        [y.sum()], [x], retain_graph=retain_graph, create_graph=create_graph)[0]
    assert ret is not None
    return ret


def hessian(coordinates: Tensor, energies: Optional[Tensor] = None,
            forces: Optional[Tensor] = None) -> Tensor:
    """Compute analytical hessian from the energy graph or force graph.

    Arguments:
        coordinates: Tensor of shape `(molecules, atoms, 3)` or `(atoms, 3)`
        energies: Tensor of shape `(molecules,)`, or scalar, if specified,
            then `forces` must be `None`. This energies must be computed
            from `coordinates` in a graph.
        forces: Tensor of shape `(molecules, atoms, 3)` or `(atoms, 3)`,
            if specified, then `energies` must be `None`. This forces must
            be computed from `coordinates` in a graph.

    Returns:
        Tensor of shape `(molecules, 3 * atoms, 3 * atoms)` or `(3 * atoms, 3 * atoms)`
    """
    if energies is None and forces is None:
        raise ValueError('Energies or forces must be specified')
    if energies is not None and forces is not None:
        raise ValueError('Energies or forces can not be specified at the same time')
    if forces is None:
        assert energies is not None
        forces = -_get_derivatives_not_none(coordinates, energies, create_graph=True)
    flattened_force = forces.flatten(start_dim=-2)
    force_components = flattened_force.unbind(dim=-1)
    return -torch.stack([
        _get_derivatives_not_none(coordinates, f, retain_graph=True).flatten(start_dim=-2)
        for f in force_components
    ], dim=-1)

Below are helper functions to compute vibrational frequencies and normal modes. The normal modes and vibrational frquencies satisfies the following equation.

\[H q = \omega^2 T q\]

where \(H\) is the Hessian matrix, \(q\) is the normal coordinates, and

\[\begin{split}T=\left[ \begin{array}{ccccccc} m_{1}\\ & m_{1}\\ & & m_{1}\\ & & & m_{2}\\ & & & & m_{2}\\ & & & & & m_{2}\\ & & & & & & \ddots \end{array} \right]\end{split}\]

is the mass for each coordinate.

This is a generalized eigen problem, which is not immediately supported by PyTorch So we solve this problem through Lowdin diagnolization:

\[H q = \omega^2 T q \Longrightarrow H q = \omega^2 T^{\frac{1}{2}} T^{\frac{1}{2}} q\]

Let \(q' = T^{\frac{1}{2}} q\), we then have

\[T^{\frac{1}{2}} H T^{\frac{1}{2}} q' = \omega^2 q'\]

this is a regular eigen problem

class FreqsModes(NamedTuple):
    angular_frequencies: Tensor
    modes: Tensor


def vibrational_analysis(masses: Tensor, hessian: Tensor) -> FreqsModes:
    """Computing the vibrational wavenumbers from hessian.

    Arguments:
        masses: Tensor of shape `(molecules, atoms)` or `(atoms,)`.
        hessian: Tensor of shape `(molecules, 3 * atoms, 3 * atoms)` or
            `(3 * atoms, 3 * atoms)`.

    Returns:
        A namedtuple `(angular_frequencies, modes)` where

        angular_frequencies:
            Tensor of shape `(molecules, 3 * atoms)` or `(3 * atoms,)`
        modes:
            Tensor of shape `(molecules, modes, atoms, 3)` or `(modes, atoms, 3)`
            where `modes = 3 * atoms` is the number of normal modes.
    """
    inv_sqrt_mass = masses.rsqrt().repeat_interleave(3, dim=-1)
    mass_scaled_hessian = hessian * inv_sqrt_mass.unsqueeze(-2) * inv_sqrt_mass.unsqueeze(-1)
    eigenvalues, eigenvectors = torch.symeig(mass_scaled_hessian, eigenvectors=True)
    angular_frequencies = eigenvalues.sqrt()
    modes = (eigenvectors.transpose(-1, -2) * inv_sqrt_mass.unsqueeze(-2))
    new_shape = modes.shape[:-1] + (-1, 3)
    modes = modes.reshape(new_shape)
    return FreqsModes(angular_frequencies, modes)

Total running time of the script: ( 0 minutes 0.003 seconds)

Gallery generated by Sphinx-Gallery